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SRTM Ground Data Processing System
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Algorithmic Conceptual Flow
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Topographic Processing System
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TPS Preliminary SRTM Processing
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Burst Processing Algorithms

e Problem:

— Choose algorithm to perform azimuth compression over the
synthetic aperture, taking into account the burst
discontinuities in the observing strategy

» performance accuracy

o efficiency

e simplicity and ease of implementation
e Options:

— Strip-Mode Processing - Standard Doppler processing as
though there were no burst strategy employed

— SPECAN Processing (M. Jin) - Deramp FFT method
employed in RADARSAT ScanSAR processor

— Burst Isolated Doppler Processing
— Modified SPECAN Processing
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Burst-Isolated Compression in Burst Mode
SAR
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SAR Geometry
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Beam Geometry




Burst Geometry
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Processing Schematic
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“Azimuth Compression: Standard Doppler
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Azimuth Compression: Standard SPECAN
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Azimuth Compression: Modified SPECAN
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Burst Processing Issues

e Multiple Looks in Azimuth

e Azimuth resolution degradatic))(ﬁ/XB %
by

e Azimuth Dependent Impulse
Response

e Amplitude Scalloping
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Burst Compress Test Scheme

ERS/SIRC

Compare Results

* Burst Compression software allows Doppler or Modified SPECAN Processing, with
variable burst length, interburst period, decimation ratio, stretch and shift (for M/S).

**Phase characteristics can also be compared by forming cross-method interferograms.
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lllustration of Burst Interferogram
Combination

Synthetic Aperture Length

Aperture Plane

Ground Plane

Interferograms formed from each burst overlap in the ground plane.
Interferograms are coherently added to recover looks in processing.

Doppler and Modified SPECAN processing ensure constant mapping
from burst to burst.




@’ JpL

ERS Interferogram Test Example

Standard Strip Mode Interferogram Amplitude (4 looks; then 4x4 more)

Note Amplitude Scalloping
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ERS Interferogram Test Example
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Motion Data Characteristics and Impact on
Burst Mode Processing

e Plot of AODA data motions
* Plot of residual errors if uncompensated
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SRTM Burst Algorithm Comparison
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.Regridding
» Position vectors are not uniformly
distributed in the plane following the

[e° cccccces oo height reconstruction process and
(N N o000 O0OS o000
o cecece ooe thus need to be resampled to a

uniform output grid. This process is
called regridding.
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@/ Regridding Options JPL

* The problem of interpolating data that is not sampled
on a uniform grid, that is noisy, and contains gaps is
a difficult problem.

e Several interpolation algorithms have been
implemented

— Nearest neighbor - Fast and easy but shows some artifacts
in shaded relief images.

— Simplical interpolator - uses plane going through three points
containing point where interpolation is required. Reasonably
fast and accurate.

— Convolutional - uses a windowed Gaussian approximating
the optimal prolate spheroidal weighting function for a
specified bandwidth.

— First or second order surface fitting - Uses the height data
centered in a box about a given point and does a weighted
least squares surface fit.



@ Some Bookkeeping Details JPL

e After height reconstruction each unwrapped phase point
consists of a triple of numbers, the SCH coordinates of that
point. Note that this point does not necessarily lie on an output
grid point. To preserve the full information of the reconstructed
target and have a convenient referencing frame relative to the
output grid each reconstructed point is assigned a number
which is stored in an array indexed by output grid location.

e Multiple points can be assigned

m to the same location (until the
buffer is full - nominally set to five
4 el points)

* Location in output grid (s;,c,) is determined by nearest neighbor location

c—C S$— 35,
5] ]
l [ Ac ] As
where (s,c) are the target s,c coordinates, c_,s, are the map offsets and
As, Ac are the pixel dimensions. |




Nearest Neighbor JPL

This is the simplest algorithm considered for regridding the
height and other data layers.

e Very efficient and easy to implement.

* Used very successfully in the TOPSAR and IFSARE
processors.

e Drawbacks include

~ no further reduction of height noise

— occasional regridding artifacts such as
* terracing of amplitude and height data
* height ramps due to range dependent noise levels
* valleys can be rounded out or filled
* “Pin prick” data gaps

e Data written
® from near to far
) 1

*k * range

* »* A




@/ Simplical Regridding =
Regrids the data using a planar “fit” with three points enclosing
the point where regridded value is desired.

* Several criteria are considered for selecting which triangle (or
simplex) to use when obtaining height value at regrid point

— simplex of minimal area containing regrid point

— simplex with vertex closest to regrid point

— simplex with minimal height error

— simplex with large isoperimetric ratio
* More robust than nearest neighbor in avoiding pin pricks
 Some reduction in height noise with this method.

* Used and well tested in mosaicking software.

4,
®
* * x
*. t** 4




@/ Simplical Regridding Formulas JPL

 Plane passing through three points
satisfies the equation

(P'T'I_io).ﬁz()

where 1—50, 1—51 1-52 are three known points
in the plane and # 1s the normal to
the plane given by
i=(R-F)x(R-F)
e Three points are chosen such that
« Regrid point lies in the interior of a
triangle of three points for which the
position vectors are known
- Triangle has isoperimetric ratio larger
than .3 (prevents using long skinny
triangles)
« Points are within a specified distance
‘to regrid point |
« Smallest height variance




@ Details on Simplex Selection JPL

| e Take point of minimal height variance at each
lattice point in output grid.
" Loop over all set of three vertices and eliminate

simplicies |
§1 - do not contain regrid point
- are two thin and narrow (use isoperimetric
——  Selected Simplex ratio) o |
| - distance of closest vertex in simplex to regrid
— Rejected Simplex point is two large

e If multiple candidates exist take one with minimal
height variance

Isoperimetric ratio = ﬂl’;‘: Note: This value is always less than or equal to one.

Attains the value of one for a circle.

/\

Smaller isoperimetric ratio

Larger isoperimetric ratio
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@/ Height Variance Computation

e From the equation of the plane used for simplical
interpolation the regridded height, h; in term of the

heights at the three vertices has the form
(Dy, xD

hy = (H (5, x 1331)1 J’“ ¥ ((g%xxlf))]h? ' ( (

-

where D,=P—P, and D=P-P

e The height variance of the regrid point is given by

3
_ / 22
Oy, = 2. ko,
i=1

where the k. are the coefficients of the h; given above.

e Note if the regrid point is at the median of the triangle then the k;
are all equal to 1/3. Assuming height variances are all equal there 1s a
reduction in the height variance by /3 .



@Surface Fitting and Adaptive Regridding JPL

* The surface fitting regrid method fits a quadratic
surface to points within a specified region containing
the regrid point. This method has several advantages

— reduction in height noise that depends roughly on the
inverse of the square root of the number of points in the
region used to make the fit

— helps eliminate pin prick holes in the DEM
— can simultaneously estimate slope and curvature information

* The region used for fitting plus the weights can be
adjusted to adaptively smooth the noise at the
expense of spatial resolution

— standard weighting is by the by the expected height
variance, o, determined from the interferometric correlation

— to reduce the eﬁ%?rt)‘zg_fkp int§ far from the regrid point the
weighting can be incred edc,rLsing’a simple distance
dependent additional weighting
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Surface Fitting Regrid Geometry

* Box size and additional weighting
adjusted depending upon the ratio of
the RMS surface elevation to the mean
expected height error as determined
from the interferometric correlation.

* Surface fitting acts as a low pass filter
so certain higher frequency components
will be lost in the resampling process.

i{egrid Point

.oo

- Height error
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- Convolutional Regridding Formulas

* The convolutional regridder determines the height at point as sum
of all heights points within a box, B, centered at the desired regrid
point weighted by the convolutional kernel weights which a
function of the distance from the regrid point.

h(p,)= X w(p— P,)h(P)
peB
* The height error estimate is obtained from the local height errors estimates

for each point in the box weighted by the derivatives of the kernel with
respect to the spatial variables.

ow ?
0, (D)= \/Z(—(P—PO)) . (P)
peB\ Op
* As with the surface fitting algorithm an estimate of the slope and curvature

can be obtained using the first and second derivatives of the convolutional
kernel.
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Longvalley DEM

Colorwrap = 100 m

* Map is a combination of TOPSAR generated DEM of Long Valley and
USGS data. Data is used to simulate interferograms that are used in height
reconstruction. Simulation includes layover, shadow and masks out areas
where fringe frequency is too fast for unwrapping.
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LongValley Nearest Neighbor
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LongValley Convolutional
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@ Adaptive Regridding Parameter Determination JPL

* In the adaptive regridding process it is desired to adjust the amount of
smoothing depending on the amount of topography compared to the
intrinsic measurement noise.

* The amount of noise reduction and smoothing depends on the size of box
used for the regrid point estimate and the amount of weighting employed.

* For computational efficiency is desired to have the weighting depend only
on the measurement noise and not vary spatially with the data, however
this reduces the flexibility in controlling the amount of smoothing vs noise
reduction.

* The box size for fitting is determined by comparing the 2 residual of the
surface fit to the mean of the estimated height noise as determined from the
correlation in the box.

- large residuals compared to the intrinsic noise level means that surface
fit is not a good model for the local topography and therefore a smaller
box size should be use.

- each box size must be checked to insure that the points within the box
the correct geometric distribution as needed by the algorithm employed.



@ Surface Fitting Regridding Equations JPL

* The least squares fit to a quadratic surface (degree of surface, N =2) requires
the estimation of six parameters

q(x,y)=a,, +a,,x + ayy +a; xy + a20x2 + aoz)’2
which are obtained by solving the 6x6 linear system glven below

- Z_ zﬁ_ 2 .YI Z x12 2 tyl Z yl _fl,_
Faoo io; o} o} o? . i o?
2 3 2
xi X;V; X; X;y; ,y' x:h:
i B Z— 3 22l L g Iidi gy lidi v Xt
ay i} Yol Ta o ol ol i o}
2 2 2 3
A XN gV gEN e X g y 2
Ay Fol G o, for Tor T To? i ?2
= 2 2 4 3 2.2
Xi x; Xi Yi Xi Xi Yi Xi Ji xih
a 25 X 25 X 5t Y45 X5
20 702 .gf i o ,-33_,-7 o o, i izhl
XV X;Vi XV X<y X:V; X;yihy;
a” ) tzt Z Z ¥ lyl ¥ l%’l ) lzl ¥ l.);l Y '6‘2
i 0; o; i 0' i O; i O; i Oj i 4
2 2 2.2 3 4 2
a Yi X;Yi )’: Xi )i X;Yi Yi Yihy
%02 | LD R D D X3
Yof Yoo Yo Yo Yo Y| |V

* Using Cholesky decomposition to invert the matrix and some careful

bookkeeping in computing the matrix , yields the required operations

per point of

-é-((N T 1)2(N T 2))3 + M(N+1)(2N+1)  M=# points

. —~~  Matrix Computation in fit
Matrix Inversion P
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Convolutional

Kernel

JPL

Convolutional Regrid Geometry

Regrid Point

Regrid Region

* Box size and additional weighting
adjusted depending upon the ratio of
the RMS surface elevation to the mean
expected height error as determined
from the interferometric correlation.

* Convolutional regridding kernel is a
windowed Gaussian approximating the
optimal prolate spheroidal weighting
function for a specified bandwidth.

———— Measured Height
Regridded Height




@’ JPL

LongValley Surface Fit
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Helght Error Spectrum for LongValley
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Surface Fit & Convolutional Mt. Everest




@ Conclusions JPL

* Four regridding algorithms for interferometric (and SAR Stereo)
radar data in terms of the noise reduction capability and the
amount of smoothing done to the data. Also considered in the
study were adaptive algorithms where noise reduction is traded
for resolution.

* Major Conclusions:
— Nearest neighbor and Simplical algorithms can be biased if there is
systematic spatially varying noise.
— Convolutional and Surface fitting are unbiased and have the best
noise reduction capability and the expense of increased computation.

— Adaptive regridding does a good job of get the maximal noise
reduction while still preserving many of the high frequency spatial
features.

* Slope (and or curvature maps) can be accurately and simply
computed when simplical, convolutional or surface fitting
techniques are used.



